SPECTRUM® Mathematical Special Special

GRADE

Focused Practice for Math Mastery

- Rational and irrational numbers
- Linear equations
 - Pythagorean Theorem
 - Geometry in the coordinate plane
 - Probability and statistics
 - Answer key

Check What You Know

Integers and Exponents

Find the value of each expression.

C

1.
$$7^3 =$$

3.
$$4^{-3} =$$

4.
$$2^{-5} =$$

5.
$$7^4 =$$

b

$$8^5 =$$

$$I^5 =$$

$$3^{-5} =$$

$$9^{-3} =$$

$$3^{-4} =$$

C

$$4^2 =$$

$$7^{-4} =$$

$$10^{-3} =$$

Rewrite each multiplication or division expression using a base and an exponent.

6.
$$4^5 \div 4^2 =$$

$$6^{-5} \times 6^3 =$$

$$8^{-4} \div 8^{-2} =$$

7.
$$9^{11} \div 9^6 =$$

$$5^{-3} \times 5^{-1} =$$

$$3^{-6} \div 3^{4} =$$

8.
$$8^2 \times 8^3 =$$

$$6^4 \times 6^7 =$$

$$4^{-2} \div 4^{-5} =$$

9.
$$7^6 \div 7^3 =$$

$$4^8 \times 4^3 =$$

$$9^5 \times 9^6 =$$

10.
$$2^9 \div 2^{-3} =$$

$$3^8 \div 3^2 =$$

$$12^4 \times 12^{10} =$$

11.
$$5^4 \times 5^2 =$$

$$10^7 \div 10^4 =$$

12.
$$7^5 \div 7^2 =$$

$$6^6 \times 6^3 =$$

$$12^4 \div 12^2 =$$

5

Check What You Know

Integers and Exponents

Rewrite each in standard notation.

13.
$$9.545 \times 10^3$$

$$8.596 \times 10^{-3}$$

$$9.318 \times 10^{-3}$$

14. 8.124×10^6

$$8.743 \times 10^{4}$$

$$2.961 \times 10^{5}$$

15.
$$1.0428 \times 10^4$$

$$7.8543 \times 10^{-2}$$

$$4.937 \times 10^{-4}$$

16.
$$2.396 \times 10^5$$

$$8.352 \times 10^{-6}$$

$$3.85 \times 10^{7}$$

17.
$$3.957 \times 10^2$$

$$9.389 \times 10^{6}$$

$$4.109 \times 10^{-5}$$

Rewrite each in scientific notation.

Lesson I.I Using Exponents

A **power** of a number represents repeated multiplication of the number by itself.

 $6^{4} = 6 \times 6 \times 6 \times 6$ and is read 6 to the fourth power.

In exponential numbers, the **base** is the number that is multiplied, and the **exponent** represents the number of times the base is used as factor. In 64, 6 is the base and 4 is the exponent.

5⁵ means 5 is used as a factor 5 times.

$$5 \times 5 \times 5 \times 5 \times 5 = 3,125$$
 $5^5 = 3,125$

$$5^5 = 3.125$$

Write each power as a product of the factors.

Use exponents to rewrite these expressions.

b

$$2 \times 2 \times 2 \times 2$$

$$6. \quad 5 \times 5 \times 5 \times 5 \times 5 \times 5$$

Find the value of each expression.

7.
$$8^3 =$$

$$10^2 =$$

Lesson I.I Using Exponents

Write each power as a product of the factors.

a

b

C

4³ _____

3⁴ _____

Use exponents to rewrite these expressions.

C

b

$$5 \times 5 \times 5 \times 5$$

$$4 \times 4 \times 4 \times 4 \times 4 \dots$$

8.
$$10 \times 10 \times 10 \times 10 \times 10$$

$$15 \times 15 \times 15 \times 15 \times 15$$

Find the value of each expression.

a

b

C

$$3^4 =$$

$$10^5 =$$

10.
$$7^5 =$$

$$5^3 =$$

$$8^4 =$$

11.
$$4^2 =$$

$$2^5 =$$

$$12^3 =$$

$$7^3 =$$

Lesson 1.2 Equivalent Expressions with Exponents

To multiply powers with the same base, combine bases, add the exponents, then simplify.

$$2^2 \times 2^3 = 2^{2+3} = 2^5 = 32$$

To divide powers with the same base, combine bases, subtract the exponents, then simplify.

$$3^5 \div 3^2 = 3^{5-2} = 3^3 = 27$$

Find the value of each expression.

1.
$$7^2 =$$
 8³ = _____

$$8^3 =$$

$$4^3 =$$

2.
$$10^2 =$$
 9⁴ = _____

$$| | |^5 =$$

3.
$$17^3 =$$

$$5^6 =$$

$$12^5 =$$

Rewrite each expression as one base and one exponent. Then, find the value.

5.
$$8^2 \times 8^3 = 8^5$$
; 32768 $3^3 \times 3^3 =$ $2^2 \times 2^2 =$

$$3^3 \times 3^3 =$$

$$2^2 \times 2^2 =$$

6.
$$7^4 \div 7^2 =$$

$$16^4 \div 16^2 =$$

7.
$$6^4 \times 6^1 =$$

$$4^4 \times 4^2 =$$

$$3^2 \times 3^2 =$$

8.
$$10^6 \div 10^4 =$$

$$8^3 \div 8^2 =$$

$$8^3 \div 8^2 = \underline{\hspace{1cm}} 7^6 \div 7^3 = \underline{\hspace{1cm}}$$

9.
$$5^3 \times 5^2 =$$
 ______ $10^3 \times 10^4 =$ ______ $15^2 \times 15^1 =$ _____

$$10^3 \times 10^4 =$$

$$15^2 \times 15^1 =$$

10.
$$2^8 \div 2^3 =$$
 $3^9 \div 3^7 =$ $6^6 \div 6^3 =$

$$3^9 \div 3^7 =$$

$$6^6 \div 6^3 =$$

Lesson 1.2 Equivalent Expressions with Exponents

Rewrite each multiplication or division expression using a base and an exponent.

C

1. $4^3 \times 4^5 =$ _____

2. $(3 \times 3 \times 3) \times (3 \times 3) =$

3. $8^5 \div 8 =$

4. $(5 \times 5) \times (5 \times 5) =$ _____

5. $10^3 \times 10 =$ _____

6. $4^3 \div 4^2 =$ _____

7. $||^5 \times ||^2 =$

8. $(8 \times 8 \times 8 \times 8) \div (8 \times 8) =$

9. $12^9 \times 12^2 =$ _____

10. $3^4 \times 3^4 =$ _____

11. $(5 \times 5 \times 5) \div 5 =$ _____

12. $4^{12} \div 4^{6} =$

13. $(6 \times 6 \times 6 \times 6) \div (6 \times 6 \times 6) =$

14. $9^9 \times 9^6 =$

15. $2^7 \div 2 =$ _____

b

 $9^2 \times 9^3 =$ _____

 $5^6 \div 5^3 =$

 $(2 \times 2 \times 2 \times 2) \div (2 \times 2) =$

 $9^9 \div 9^5 =$ _____

 $6^5 \div 6^2 =$ _____

 $(7 \times 7 \times 7) \div 7 = \underline{\hspace{1cm}}$

 $6 \times 6^5 =$

 $5^3 \times 5^2 =$

 $(4 \times 4 \times 4 \times 4) \div 4 =$

 $6^8 \times 6^4 =$ _____

 $3^3 \times 3^9 =$ _____

 $15^8 \div 15^3 =$

 $7^8 \times 7^2 =$ _____

4¹¹ × 4 =

Lesson 1.3 Negative Exponents

When a power includes a negative exponent, express the number as I divided by the base and change the exponent to positive.

$$4^{-2} = \frac{1}{4^2}$$

$$= \frac{1}{16}$$

$$= 0.0625$$

To multiply or divide powers with the same base, combine bases, add or subtract the exponents, and then simplify.

$$2^{-3} \times 2^{-2} = 2^{-5} = \frac{1}{2^5} = 0.03125$$

$$2^{-4} \div 2^{-2} = 2^{-2} = \frac{1}{2^2} = 0.25$$

Rewrite each expression with a positive exponent. Then, solve. Round your answer to four decimal places.

1.
$$3^{-2} =$$

$$6^{-3} =$$

$$8^{-2} =$$

2.
$$7^{-3} =$$

$$3^{-3} =$$

$$9^{-2} =$$

3.
$$4^{-3} =$$

$$5^{-2} =$$

$$2^{-3} =$$

4.
$$2^{-4} =$$

$$10^{-3} =$$

Find each product. Round your answer to five decimal places.

5.
$$4^{-2} \times 4^{-3} =$$
 $2^{-4} \times 2^{-1} =$

$$2^{-4} \times 2^{-1} =$$

$$3^{-2} \times 3^{-3} =$$

6.
$$6^{-2} \times 6^{-2} =$$

$$5^{-2} \times 5^{-4} =$$

$$3^{-2} \times 3^{-2} =$$

7.
$$8^{-6} \times 8^{4} =$$

$$7^{-5} \times 7^2 =$$

$$2^{-7} \times 2^{4} =$$

Find each quotient. Round your answer to five decimal places.

8.
$$4^{-4} \div 4^{-2} =$$

$$8^{-5} \div 8^{-3} =$$

$$3^{-5} \div 3^{-2} =$$

9.
$$2^{-8} \div 2^{-4} =$$

$$5^{-6} \div 5^{-4} =$$

$$6^{-7} \div 6^{-4} =$$

10.
$$3^{-3} \div 3^2 =$$

10.
$$3^{-3} \div 3^2 =$$
 $4^{-3} \div 4^1 =$ $2^{-6} \div 2^{-3} =$

$$2^{-6} \div 2^{-3} =$$

Lesson 1.3 Negative Exponents

Rewrite each multiplication or division expression using a base and an exponent.

a

1.
$$3^{-4} \times 3^{-6} =$$

2.
$$4^3 \div 4^{-2} =$$

3.
$$12^{-3} \times 12^{-4} =$$

4.
$$7^6 \div 7^{-3} =$$

5.
$$11^4 \times 11^{-3} =$$

6.
$$8^{-5} \div 8^3 =$$

7.
$$7^5 \times 7^{-4} =$$

8.
$$2^5 \div 2^{-3} =$$

9.
$$6^3 \div 6^{-4} =$$

10.
$$9^{-3} \times 9^{4} =$$

11.
$$8^{-4} \div 8^{-2} =$$

12.
$$3^{-6} \times 3^{-3} =$$

13.
$$10^{-2} \div 10^3 =$$

14.
$$9^{-6} \div 9^{-3} =$$

15.
$$6^{-5} \div 6^3 =$$

16.
$$12^{-6} \div 12 =$$

b

$$9^{-3} \div 9^{-5} =$$

$$5^5 \times 5^{-6} =$$

$$4^{-6} \times 4^{4} =$$

$$2^{-3} \div 2^3 =$$

$$6^{-5} \times 6^{-4} =$$

$$5^{-3} \times 5^2 =$$

$$3^{-12} \times 3^{-4} =$$

$$7^{-3} \div 7^{4} =$$

$$10^{-5} \times 10^{-2} =$$

$$2^{-2} \times 2^{-12} =$$

$$8^{-6} \div 8^{4} =$$

$$4^{-5} \times 4^{-2} =$$

$$|| ||^{4} \div || ||^{-2} =$$

$$5^{-12} \times 5^{-4} =$$

$$4^{-4} \times 4^{-3} =$$

Lesson 1.4 Scientific Notation

Scientific notation is most often used as a concise way of writing very large and very small numbers. It is written as a number between 1 and 10 multiplied by a power of 10. Any number can be expressed in scientific notation.

$$1,503 = 1.503 \times 10^3$$

$$0.0376 = 3.76 \times 10^{-2}$$

$$85 = 8.5 \times 10$$

Translate numbers written in scientific notation into standard form by reading the exponent.

$$7.03 \times 10^5 = 703000$$

$$5.4 \times 10^{-4} = 0.00054$$

Move the decimal right 5 places.

Move the decimal left 4 places.

Write each number in scientific notation.

C

Write each number in standard form.

7.
$$2.6 \times 10^{-3} =$$

$$8.46 \times 10^5 =$$

$$4.65 \times 10^{-1} =$$

8.
$$9.02 \times 10^4 =$$

$$5.15 \times 10^{-2} =$$

$$8.45 \times 10^3 =$$

9.
$$7.25 \times 10^{-4} =$$

$$1.06 \times 10^3 =$$

$$9.06 \times 10^{-5} =$$

10.
$$9.7 \times 10^{-3} =$$

$$1.56 \times 10^{4} =$$

Lesson 1.4 Scientific Notation

Write each number in scientific notation.

a

Write each number in standard form.

9.
$$9.13 \times 10^5 =$$

$$4.02 \times 10^{-3} =$$

$$2.43 \times 10^4 =$$

10.
$$1.124 \times 10^{-1} =$$

$$8.48 \times 10^3 =$$

$$5.12 \times 10^{-2} =$$

11.
$$9.47 \times 10^3 =$$

$$3.28 \times 10^{-4} =$$

$$6.73 \times 10^{-3} =$$

12.
$$5.3 \times 10^{-5} =$$

$$4.13 \times 10^4 =$$

$$3.78 \times 10^4 =$$

13.
$$3.12 \times 10^3 =$$

$$1.329 \times 10^5 =$$

$$8.69 \times 10^2 =$$

14.
$$4.5 \times 10^{-4} =$$

$$9.8 \times 10^{-6} =$$

$$3.56 \times 10^5 =$$

15.
$$5.42 \times 10^{-2} =$$

$$9.08 \times 10^{-8} =$$

$$2.7 \times 10^3 =$$

16.
$$7.3 \times 10^2 =$$

$$1.25 \times 10^4 =$$

$$8.8 \times 10^{-8} =$$